Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.944
1.
Front Immunol ; 15: 1385691, 2024.
Article En | MEDLINE | ID: mdl-38605955

Mesenchymal stem/stromal cells (MSCs) are being increasingly used in cell-based therapies due to their broad anti-inflammatory and immunomodulatory properties. Intravascularly-administered MSCs do not efficiently migrate to sites of inflammation/immunopathology, but this shortfall has been overcome by cell surface enzymatic fucosylation to engender expression of the potent E-selectin ligand HCELL. In applications of cell-based therapies, cryopreservation enables stability in both storage and transport of the produced cells from the manufacturing facility to the point of care. However, it has been reported that cryopreservation and thawing dampens their immunomodulatory/anti-inflammatory activity even after a reactivation/reconditioning step. To address this issue, we employed a variety of methods to cryopreserve and thaw fucosylated human MSCs derived from either bone marrow or adipose tissue sources. We then evaluated their immunosuppressive properties, cell viability, morphology, proliferation kinetics, immunophenotype, senescence, and osteogenic and adipogenic differentiation. Our studies provide new insights into the immunobiology of cryopreserved and thawed MSCs and offer a readily applicable approach to optimize the use of fucosylated human allogeneic MSCs as immunomodulatory/anti-inflammatory therapeutics.


Immunomodulation , Mesenchymal Stem Cells , Humans , Glycosylation , Mesenchymal Stem Cells/metabolism , Cryopreservation/methods , Anti-Inflammatory Agents/metabolism
2.
J Agric Food Chem ; 72(17): 9555-9566, 2024 May 01.
Article En | MEDLINE | ID: mdl-38648511

The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like ß-xylosidases, ß-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.


Penicillium , Secondary Metabolism , Penicillium/metabolism , Humans , Animals , Polyketides/metabolism , Polyketides/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
3.
Cell Mol Life Sci ; 81(1): 152, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528207

Monocyte-derived macrophages play a key pathogenic role in inflammatory diseases. In the case of rheumatoid arthritis (RA), the presence of specific synovial tissue-infiltrating macrophage subsets is associated with either active disease or inflammation resolution. JAK inhibitors (JAKi) are the first targeted synthetic disease-modifying antirheumatic drugs (tsDMARD) approved for treatment of RA with comparable efficacy to biologics. However, the effects of JAKi on macrophage specification and differentiation are currently unknown. We have analyzed the transcriptional and functional effects of JAKi on human peripheral blood monocyte subsets from RA patients and on the differentiation of monocyte-derived macrophages promoted by granulocyte-macrophage colony-stimulating factor (GM-CSF), a factor that drives the development and pathogenesis of RA. We now report that JAKi Upadacitinib restores the balance of peripheral blood monocyte subsets in RA patients and skewed macrophages towards the acquisition of an anti-inflammatory transcriptional and functional profile in a dose-dependent manner. Upadacitinib-treated macrophages showed a strong positive enrichment of the genes that define synovial macrophages associated to homeostasis/inflammation resolution. Specifically, Upadacitinib-treated macrophages exhibited significantly elevated expression of MAFB and MAFB-regulated genes, elevated inhibitory phosphorylation of GSK3ß, and higher phagocytic activity and showed an anti-inflammatory cytokine profile upon activation by pathogenic stimuli. These outcomes were also shared by macrophages exposed to other JAKi (baricitinib, tofacitinib), but not in the presence of the TYK2 inhibitor deucravacitinib. As a whole, our results indicate that JAKi promote macrophage re-programming towards the acquisition of a more anti-inflammatory/pro-resolution profile, an effect that correlates with the ability of JAKi to enhance MAFB expression.


Arthritis, Rheumatoid , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/metabolism , Janus Kinase Inhibitors/therapeutic use , Macrophages/metabolism , Arthritis, Rheumatoid/pathology , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/metabolism , MafB Transcription Factor/genetics , MafB Transcription Factor/metabolism
4.
Drug Dev Res ; 85(2): e22173, 2024 Apr.
Article En | MEDLINE | ID: mdl-38515272

New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.


Lipopolysaccharides , Pyridazines , Mice , Animals , Humans , Lipopolysaccharides/pharmacology , Cyclooxygenase 2/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , RAW 264.7 Cells , Pyridazines/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
5.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528569

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Caffeic Acids , Mitochondrial Diseases , Phenylethyl Alcohol , Spinal Cord Injuries , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Methylprednisolone/pharmacology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Molecular Docking Simulation , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylethyl Alcohol/analogs & derivatives , Reactive Oxygen Species/metabolism , Signal Transduction , Sirtuin 1/metabolism , Spinal Cord , Spinal Cord Injuries/drug therapy , Dynamins/drug effects
6.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38542316

Nardostachys jatamansi is widely used as a traditional medicine in Asian countries. Numerous recent studies have reported the biological activities of its secondary metabolites and extracts. In this study, a total of 14 components were isolated, including cycloolivil and 2-(3'-hydroxy-5'-ethoxyphenyl)-3-hydroxylmethyl-7-methoxy-2,3-dihydrobenzofuran-5-carboxylic acid, which were first discovered in N. jatamansi. The isolated compounds were investigated for their anti-inflammatory effects on HaCaT keratinocytes and their potential to alleviate skin inflammation. The results of the screening revealed that cycloolivil and 4ß-hydroxy-8ß-methoxy-10-methylene-2,9-dioxatricyclo[4.3.1.03,7]decane reduced the production of inflammatory cytokines induced by TNF-α/IFN-γ, such as IL-6, IL-8, and RANTES, in keratinocytes. This study focused on exploring the biological effects of cycloolivil, and the results suggested that cycloolivil inhibits the expression of COX-2 proteins. Further mechanistic evaluations confirmed that the anti-inflammatory effects of cycloolivil were mediated by blockage of the NF-κB and JAK/STAT signaling pathways. These results suggest that cycloolivil isolated from N. jatamansi could be used to treat skin inflammatory diseases.


NF-kappa B , Nardostachys , Phenols , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nardostachys/metabolism , Interferon-gamma/metabolism , Keratinocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
7.
Eur J Pharmacol ; 971: 176541, 2024 May 15.
Article En | MEDLINE | ID: mdl-38556120

Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1ß, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.


Antioxidants , Hesperidin , Spinal Cord Injuries , Rats , Animals , Caspase 3/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Apoptosis , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Spinal Cord
8.
Immun Inflamm Dis ; 12(3): e1194, 2024 Mar.
Article En | MEDLINE | ID: mdl-38501544

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet ß cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS: We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS: NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION: NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.


Parkinson Disease , Animals , Parkinson Disease/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , Microglia/metabolism , 1-Methyl-4-phenylpyridinium/metabolism , 1-Methyl-4-phenylpyridinium/pharmacology , Inflammation/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
9.
Microb Cell Fact ; 23(1): 84, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486239

Extreme halophilic archaea that can live in high saline environments can offer potential applications in different biotechnological fields. This study delves into the fascinating field of halophilic archaea and their ability to produce biosurfactants. Some strains of haloarchaea were isolated from Wadi El-Natrun and were screened for biosurfactants production in a standard basal medium using emulsification index assay. Two strains were chosen as the potential strains for surface tension reduction. They were identified as Natrialba sp. BG1 and N3. The biosurfactants production was optimized and the produced emulsifiers were partially purified and identified using FTIR and NMR. Sequential statistical optimization, Plackett-Burman (PB) and Box-Behnken Designs (BBD) were carried out using 5 factors: oil, NaCl, casamino acids, pH, and inoculum size. The most significant factors were used for the next Response Surface Methodology experiment. The final optimal conditions for biosurfactants production were the inoculum size 2% pH 11 and NaCl 250 g/L, for Natrialba sp. BG1 and inoculum size 2.2%, pH 10 and NaCl 100 g/L for Natrialba sp. N3. The produced biosurfactants were tested for wound healing and the results indicated that Natrialba sp. BG1 biosurfactants is more efficient than Natrialba sp. N3 biosurfactants. Biosurfactants extracts were tested for their cytotoxic effects on normal cell line as well as on different cancer cells using MTT assay. The findings demonstrated that varying concentrations of the biosurfactants (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) exhibited cytotoxic effects on the cell lines being tested. Additionally, the outcomes unveiled the presence of anti-inflammatory and antioxidant properties for both biosurfactants. Consequently, they could potentially serve as natural, safe, and efficient novel agents for combating cancer, promoting wound healing, and providing anti-inflammatory and antioxidant benefits.


Halobacteriaceae , Sodium Chloride , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Egypt , Antioxidants/metabolism , Halobacteriaceae/metabolism , Anti-Inflammatory Agents/metabolism
10.
Food Funct ; 15(7): 3765-3777, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38506656

Given the limited efficacy and adverse effects associated with conventional drugs, probiotics are emerging as a promising therapeutic strategy for mitigating the chronic nature of ulcerative colitis (UC) and its consequential secondary liver injury (SLI). Limosilactobacillus fermentum HF06 and Lactiplatibacillus plantarum HF05 are strains we screened with excellent anti-inflammatory and probiotic properties in vitro. In this study, the intervention of HF06 and HF05 in combination (MIXL) was found to be more effective in alleviating intestinal inflammation and secondary liver injury in UC mice compared to supplementing with the two strains individually. Results demonstrated that MIXL effectively attenuated colon shortening and weight loss, downregulated the expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 mRNA in the intestines, mitigated SLI, and augmented the enzymatic activities of SOD, CAT, and GSH-Px in the liver. MIXL enhances the intestinal barrier in UC mice, regulates the structure and composition of the gut microbiota, promotes the abundance of Lactobacillus, and suppresses the abundance of bacteria associated with inflammation and liver injury, including Clostridium_Sensu_Stricto_1, Escherichia, Shigella, Enterococcus, Corynebacterium, Desulfovibrio, and norank_f__Oscillospiraceae. This study demonstrated the synergistic effect of HF06 and HF05, providing a reliable foundation for the alleviation of UC.


Colitis, Ulcerative , Colitis , Probiotics , Animals , Mice , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Colon/metabolism , Liver/metabolism , Probiotics/therapeutic use , Dextran Sulfate/pharmacology , Disease Models, Animal , Colitis/drug therapy , Mice, Inbred C57BL
11.
Molecules ; 29(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38542983

The polysaccharides from Stemona tuberosa Lour, a kind of plant used in Chinese herbal medicine, have various pharmacological activities, such as anti-inflammatory and antioxidant properties. However, the effects of the extraction methods and the activity of polysaccharides from different parts are still unknown. Therefore, this study aimed to evaluate the effects of different extraction methods on the yields, chemical compositions, and bioactivity of polysaccharides extracted from different parts of Stemona tuberosa Lour. Six polysaccharides were extracted from the leaves, roots, and stems of Stemona tuberosa Lour through the use of hot water (i.e., SPS-L1, SPS-R1, and SPS-S1) and an ultrasound-assisted method (i.e., SPS-L2, SPS-R2, and SPS-S2). The results showed that the physicochemical properties, structural properties, and biological activity of the polysaccharides varied with the extraction methods and parts. SPS-R1 and SPS-R2 had higher extraction yields and total sugar contents than those of the other SPSs (SPS-L1, SPS-L2, SPS-S1, and SPS-S2). SPS-L1 had favorable antioxidant activity and the ability to downregulate MUC5AC expression. An investigation of the anti-inflammatory properties showed that SPS-R1 and SPS-R2 had greater anti-inflammatory activities, while SPS-R2 demonstrated the strongest anti-inflammatory potential. The results of this study indicated that SPS-L1 and SPS-L2, which were extracted from non-medicinal parts, may serve as potent natural antioxidants, but further study is necessary to explore their potential applications in the treatment of diseases. The positive anti-inflammatory effects of SPS-R1 and SPS-R2 in the roots may be further exploited in drugs for the treatment of inflammation.


Stemonaceae , Stemonaceae/chemistry , Stemonaceae/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
12.
Food Funct ; 15(7): 3583-3599, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38469921

Lactobacillus probiotics exert their effects in a strain-specific and metabolite-specific manner. This study aims to identify lactobacilli that can effectively enhance the intestinal barrier function both in vitro and in vivo and to investigate the underlying metabolite and molecular mechanisms involved. Nine Lactobacillus isolates were evaluated for their ability to enhance the IPEC-J2 cellular barrier function and for their anti-inflammatory and anti-apoptotic effects in IPEC-J2 cells after an enterotoxigenic Escherichia coli challenge. Of the nine isolates, L. plantarum T10 demonstrated significant advantages in enhancing the cellular barrier function and displayed anti-inflammatory and anti-apoptotic activities in vitro. The bioactivities of L. plantarum T10 were primarily attributed to the production of exopolysaccharides, which exerted their effects through the TLR-mediated p38 MAPK pathway in ETEC-challenged IPEC-J2 cells. Furthermore, the production of EPS by L. plantarum T10 led to the alleviation of dextran sulfate sodium-induced colitis by reducing intestinal damage and enhancing the intestinal barrier function in mice. The EPS is classified as a heteropolysaccharide with an average molecular weight of 23.0 kDa. It is primarily composed of mannose, glucose, and ribose. These findings have practical implications for the targeted screening of lactobacilli used in the production of probiotics and postbiotics with strain-specific features of exopolysaccharides.


Escherichia coli Infections , Lactobacillus plantarum , Probiotics , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Barrier Function , Escherichia coli Infections/metabolism , Lactobacillus , Anti-Inflammatory Agents/metabolism
13.
J Immunol Res ; 2024: 7484490, 2024.
Article En | MEDLINE | ID: mdl-38455363

Macrophages are the immune cells of high-immunological plasticity, which can exert both pro- and anti-inflammatory activity, as well as repolarize their phenotype to the opposite or neutral one. In this regard, M2 macrophages of the tumor-associated stroma (TAS) are a promising therapeutic target in treating malignant neoplasms. Using FACS assay, we have estimated the CD11b+/Ly-6G+/Ly-6C+ fraction of macrophages from the peritoneum and TAS in intact healthy mice and those with developed Lewis carcinoma, both untreated and treated according to Karanahan technology in combination with group-specific macrophage activator (GcMAF-RF). As well, the pattern of pro- and anti-inflammatory cytokines mRNA expression in different groups of experimental and tumor-bearing animals was assessed. It was found that: (i) exposure of intact mice to GcMAF-RF results in the increased number of CD11b+/Ly-6C+ peritoneal macrophages and, at the same time, the expression pattern of cytokines in peritoneal macrophages switches from that characteristic of the mixed M1/M2 phenotype to that characteristic of the neutral M0 one; (ii) combination of Karanahan technology and GcMAF-RF treatment results in M0/M1 repolarization of TAS macrophages; (iii) in tumor-bearing mice, the response of peritoneal macrophages to such a treatment is associated with the induction of anti-inflammatory reaction, which is opposite to that in TAS macrophages.


Macrophage-Activating Factors , Macrophages , Neoplasms , Vitamin D-Binding Protein , Mice , Animals , Macrophages, Peritoneal/metabolism , Cytokines/metabolism , Neoplasms/pathology , Anti-Inflammatory Agents/metabolism
14.
Inflammopharmacology ; 32(2): 1317-1332, 2024 Apr.
Article En | MEDLINE | ID: mdl-38512654

The undesirable inflammation and the excessive M1 macrophage activity may lead to inflammatory diseases. Corticosteroids and stem cell therapy are used in clinical practice to promote anti-inflammatory responses. However, this protocol has limitations and is associated with numerous side effects. In this study, the synergistic anti-inflammatory effects of dexamethasone (Dex) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) were evaluated to enhance the polarization of M1 inflammatory macrophages into the anti-inflammatory (M2) phenotype. Hence, we designed different combinations of Dex and EVs using three methods, including EVs isolated from Dex-preconditioned MSCs (Pre-Dex-EVs), EVs loaded with Dex (L-Dex-EVs), and EVs and Dex co-administration (Dex + EVs). All designed EVs had a significant effect on reducing the expression of M1-related genes (iNOS, Stat1, and IRF5), cytokines (IL6 and TNF-a), and CD markers (CD86) in lipopolysaccharide-stimulated macrophages. On the other hand, these combinations promoted the expression of alternative-activated M2-related genes (Arg-1, Stat6, and IRF4), cytokine (IL10), and CD markers (CD206).The combination of Dex and MSC-EVs enhances the effectiveness of both and synergistically promotes the conversion of inflammatory macrophages into an anti-inflammatory state.


Extracellular Vesicles , Mesenchymal Stem Cells , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Dexamethasone/pharmacology
15.
Fish Shellfish Immunol ; 148: 109470, 2024 May.
Article En | MEDLINE | ID: mdl-38442766

Cantharidin is a natural compound with known therapeutic applications in humans. The aim of this study was to investigate the in vitro effects of cantharidin on gilthead seabream (Sparus aurata) head kidney leucocytes (HKL) stimulated with λ-carrageenan. HKLs were incubated for 24 h with cantharidin (0, 2.5 and 5 µg mL-1) and λ-carrageenan (0 and 1000 µg mL-1). The results showed that HKL viability only decreased by 15.2% after incubated with 5 µg mL-1 of cantharidin and λ-carrageenan. Cantharidin increased the peroxidase activity of HKLs only when incubated in combination with λ-carrageenan. Besides this, cantharidin inhibited the respiratory burst and phagocytic activities. Furthermore, cantharidin induced morphological changes in HKLs (apoptotic and vacuolization signs) that were enhanced when incubated with λ-carrageenan. Considering the analysis of the selected gene expression studied in HKLs [NF-κB subunits (rela, relb, crel, nfkb1, nfkb2), proinflammatory cytokines (il1b, tnfa), anti-inflammatory cytokines (il10, tgfb) and caspases (casp1, casp3, casp8, casp9)], although λ-carrageenan up-regulated the expression of the proinflammatory gene il1b, λ-carrageenan and cantharidin down-regulated its expression in HKLs. In addition, cantharidin up-regulated casp3 and casp9 expression. The casp3 and casp9 gene expression was down-regulated while casp1 gene expression was up-regulated in HKLs incubated with both cantharidin and λ-carrageenan. All the effects of cantharidin are related to its inhibitory effect on protein phosphatases, which induce apoptosis at long exposure times, and minimize the effects of λ-carrageenan. The present results provide detailed insight into the immune-depressive and anti-inflammatory properties of cantharidin on immune cells, which could be of interest to the aquaculture sector.


Sea Bream , Humans , Animals , Carrageenan/pharmacology , Carrageenan/metabolism , Immunity, Innate , Cantharidin/pharmacology , Cantharidin/metabolism , Caspase 3/metabolism , Depression , Leukocytes , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
16.
Stem Cells Transl Med ; 13(4): 399-413, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38366885

Intravenous administration of conditioned medium from stem cells of human exfoliated deciduous teeth (SHED-CM) regenerates mechanically injured osteochondral tissues in mouse temporomandibular joint osteoarthritis (TMJOA). However, the underlying therapeutic mechanisms remain unclear. Here, we showed that SHED-CM alleviated injured TMJ by inducing anti-inflammatory M2 macrophages in the synovium. Depletion of M2 by Mannosylated Clodrosome abolished the osteochondral repair activities of SHED-CM. Administration of CM from M2-induced by SHED-CM (M2-CM) effectively ameliorated mouse TMJOA by inhibiting chondrocyte inflammation and matrix degradation while enhancing chondrocyte proliferation and matrix formation. Notably, in vitro, M2-CM directly suppressed the catabolic activities while enhancing the anabolic activities of interleukin-1ß-stimulated mouse primary chondrocytes. M2-CM also inhibited receptor activator of nuclear factor NF-κB ligand-induced osteoclastogenesis in RAW264.7 cells. Secretome analysis of M2-CM and M0-CM revealed that 5 proteins related to anti-inflammation and/or osteochondrogenesis were enriched in M2-CM. Of these proteins, the Wnt signal antagonist, secreted frizzled-related protein 1 (sFRP1), was the most abundant and played an essential role in the shift to anabolic chondrocytes, suggesting that M2 ameliorated TMJOA partly through sFRP1. This study suggests that secretome from SHED exerted remarkable osteochondral regeneration activities in TMJOA through the induction of sFRP1-expressing tissue-repair M2 macrophages.


Osteoarthritis , Stem Cells , Humans , Mice , Animals , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Stem Cells/metabolism , Macrophages/metabolism , Osteoarthritis/therapy , Osteoarthritis/metabolism , Anti-Inflammatory Agents/metabolism , Tooth, Deciduous
17.
Eur J Pharmacol ; 969: 176437, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38417608

Inflammation is a driver of human disease and an unmet clinical need exists for new anti-inflammatory medicines. As a key cell type in both acute and chronic inflammatory pathologies, macrophages are an appealing therapeutic target for anti-inflammatory medicines. Drug repurposing - the use of existing medicines for novel indications - is an attractive strategy for the identification of new anti-inflammatory medicines with reduced development costs and lower failure rates than de novo drug discovery. In this study, FDA-approved medicines were screened in a murine macrophage NF-κB reporter cell line to identify potential anti-inflammatory drug repurposing candidates. The multi-tyrosine kinase inhibitor sunitinib was found to be a potent inhibitor of NF-κB activity and suppressor of inflammatory mediator production in murine bone marrow derived macrophages. Furthermore, oral treatment with sunitinib in mice was found to reduce TNFα production, inflammatory gene expression and organ damage in a model of endotoxemia via inhibition of NF-κB. Finally, we revealed sunitinib to have immunomodulatory effects in a model of chronic cardiovascular inflammation by reducing circulating TNFα. This study validates drug repurposing as a strategy for the identification of novel anti-inflammatory medicines and highlights sunitinib as a potential drug repurposing candidate for inflammatory disease via inhibition of NF-κB signalling.


NF-kappa B , Tumor Necrosis Factor-alpha , Humans , Mice , Animals , NF-kappa B/metabolism , Sunitinib/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Drug Repositioning , Macrophages , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism
18.
Mol Cells ; 47(2): 100031, 2024 Feb.
Article En | MEDLINE | ID: mdl-38354858

It is now well-accepted that obesity-induced inflammation plays an important role in the development of insulin resistance and type 2 diabetes. A key source of the inflammation is the murine epididymal and human visceral adipose tissue. The current paradigm is that obesity activates multiple proinflammatory immune cell types in adipose tissue, including adipose-tissue macrophages (ATMs), T Helper 1 (Th1) T cells, and natural killer (NK) cells, while concomitantly suppressing anti-inflammatory immune cells such as T Helper 2 (Th2) T cells and regulatory T cells (Tregs). A key feature of the current paradigm is that obesity induces the anti-inflammatory M2 ATMs in lean adipose tissue to polarize into proinflammatory M1 ATMs. However, recent single-cell transcriptomics studies suggest that the story is much more complex. Here we describe the single-cell genomics technologies that have been developed recently and the emerging results from studies using these technologies. While further studies are needed, it is clear that ATMs are highly heterogeneous. Moreover, while a variety of ATM clusters with quite distinct features have been found to be expanded by obesity, none truly resemble classical M1 ATMs. It is likely that single-cell transcriptomics technology will further revolutionize the field, thereby promoting our understanding of ATMs, adipose-tissue inflammation, and insulin resistance and accelerating the development of therapies for type 2 diabetes.


Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Mice , Animals , Insulin Resistance/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue/metabolism , Macrophages , Obesity/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents/metabolism , Mice, Inbred C57BL
19.
Adv Drug Deliv Rev ; 207: 115204, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342241

Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.


Anti-Inflammatory Agents , Macrophages , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Inflammation/metabolism , Wound Healing , Signal Transduction
20.
Chem Biodivers ; 21(4): e202301791, 2024 Apr.
Article En | MEDLINE | ID: mdl-38415391

Skin is the largest and outermost organ in the human body; it serves as a vital defense mechanism against various external threats. Therefore, it is crucial to maintain its health through protection against harmful substances and adequate moisture levels. This study investigates the anti-inflammatory, antioxidant, and moisturizing properties of Oxyceros horridus Lour. (Oh-EE) in human keratinocytes. Oh-EE demonstrates potent antioxidant activity and effectively protects against oxidative stress induced by external stimuli such as UVB radiation and H2O2. Additionally, it exhibits significant anti-inflammatory effects proven by its ability to downregulate the expression of pro-inflammatory cytokines, namely COX-2 and IL-6. The study also explores the involvement of the AP-1 pathway, highlighting the ability of Oh-EE to suppress the expression of p38 and its upstream regulator, MKK3/6, under UVB-induced conditions. Interestingly, Oh-EE can activate the AP-1 pathway in the absence of external triggers. Furthermore, Oh-EE enhances skin moisture by upregulating the expression of key genes involved in skin hydration, namely HAS3 and FLG. These findings underscore the potential of Oh-EE as a versatile ingredient in skincare formulations, providing a range of skin benefits. Further research is warranted to comprehensively understand the underlying mechanisms through which Oh-EE exerts its effects.


Antioxidants , Ethanol , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Ethanol/pharmacology , Hydrogen Peroxide/pharmacology , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/pharmacology , Keratinocytes , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
...